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ABSTACT  

The in-coupling process for grating-coupled planar optical waveguide sensors is investigated 

in the case of TE waves. A simple analytical model based on the Rayleigh-Fourier method is 

applied together with a perturbational technique to calculate analytical expressions for the 

guided wave amplitudes. In addition, analytical expressions are derived for the position 

correction and width of the in-coupling resonant peaks. Numerical computations verify the 

model for shallow gratings both in terms of peak shape and position and provide the 

limitations for the analytical formulas. 
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1. Introduction 

The application of grating couplers in planar optical waveguides was introduced by Lukosz and 

Tiefenthaler1 in 1983 as transducer elements for biological and chemical sensing. Since the 

introduction of this concept a vast amount of scientific effort has been invested into the 

experimental and theoretical characterization of the grating coupler in terms of optimizing its 

sensitivity2-8. 

 

In most cases, the grating coupler consists of a sinusoidal or square-wave-formed surface 

corrugation embedded in the waveguiding film, implying that the actual thickness of the film 

varies periodically in the grating region. This thickness modification alters the mode properties of 

the waveguide as compared to those of a non-corrugated waveguide. In the literature, this 

influence is often neglected, as the grating amplitude is considered small in comparison with the 

film thickness.9-14 However, Kunz et al.15 exposed the importance of finite grating depths for high 

sensitivity grating-coupled waveguide sensors by using a rigorous numerical analysis. The aim of 

the present paper is to analyze the influence of the grating depth analytically by using a 

perturbational approach based on the pioneering work of Kiselev16 in 1975. Finally, we investigate 

the regions of validity of the analytical model by comparing it with numerical results obtained 

using a boundary variation method.17-19 

 

2. Wave propagation in a corrugated waveguide: homogeneous problem 

In most grating-coupled waveguide sensors a coupling-grating imprinted into the waveguiding 

film is illuminated by an external light source while the amount of light coupled into the 

waveguide is being detected. However, as we shall see, most of the characteristic sensor properties 

are given solely by the waveguide geometry irrespective of the manner in which it is being 

illuminated. In this section we therefore start by solving Maxwell's equations for a waveguide, 
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which is left isolated without being illuminated from the outside. This is referred to as the 

homogeneous problem. 

 

A. Basic assumptions 

The system considered is shown in Fig. 1. Here a waveguiding film with thickness Fd  and 

refractive index Fn  is embedded between a semi-infinite substrate with refractive index Sn  and a 

semi-infinite cover medium with refractive index Cn . The film-cover interface is corrugated with 

a sinusoidal grating profile h  of the form 

 

( ) ( )sin ,        2 ,h x Kx Kσ π= = Λ                                           (1) 

 

where σ is the grating amplitude, K is the grating wave number, and Λ is the period of the grating. 

 

In the case where no light is incident upon the waveguide, there will only be downwards 

propagating waves in the substrate, i.e. waves with negative z components of the wave vector, and 

only upwards propagating waves in the cover. In the film, however, both up- and downwards 

propagating waves are present due to reflections at the interfaces. 

 

We assume that in each medium one dominating zeroth-order wave with an x component of the 

wave vector xk  is present. Apart from that, diffracted waves are present due to diffraction off the 

grating. However, the surface corrugation amplitude σ is taken to be small (smallness to be 

quantified later) so that only the �1st diffraction orders in each medium are taken into account. 

This assumption is well known from the Rayleigh-Fourier analysis of optical diffraction in 
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gratings, which is valid when the grating depth is much smaller than the light wavelength. As a 

result, a total of twelve waves are included in our analysis, as illustrated in Fig. 2.  

 

Like in the conventional three-layer waveguide analysis without surface corrugation,20 we wish to 

end up with a mode equation that dictates which values of xk  (i.e. which modes) are allowed in 

the waveguide. It should be emphasized here that a mode in our case consists of a set of twelve 

waves rather than the traditional four waves considered for non-corrugated waveguides. 

 

We restrict the analysis to cover only TE polarized waves, which is sufficient to illustrate the main 

features of the corrugated waveguide. 

 

B. Solution ansatz 

Since all three media are considered homogeneous, isotropic, and non-magnetic, we know that 

Maxwell’s equations have simple plane-wave solutions. Hence, for the TE polarized electric fields 

we may use the following scalar solution ansatz for the fields in the substrate, film, and cover 

, ,S F CE : 

 

 { }

1

,
1

1

, ,
1

1

,
1

exp[ ( ) ] ,

exp[ ( ) ] exp[ ( ) ] ,

exp[ ( ) ] .

S
S l x z l

l

F F
F l x z l l x z l

l

C
C l x z l

l

E b i k lK x ik z

E a i k lK x ik z a i k lK x ik z

E b i k lK x ik z

−

=−

+ −

=−

+

=−

= + −

= + + + + −

= + +

�

�

�

                    (2) 

 

The temporal frequency term ( )exp i tω− has been omitted for simplicity, and l is a summation 

index that runs through the diffraction-order numbers –1, 0, and 1. lb−  are the amplitudes of the 
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three diffraction orders in the substrate, where the superscript "-" refers to downwards propagating 

waves, la+  and la−  are the corresponding amplitudes of the up- and downwards propagating waves 

in the film, and lb+  are the upwards propagating wave amplitudes in the cover. As mentioned, xk  

denotes the x component of the zeroth-order wave vectors, which is identical in all three media, 

and ,
j

z lk  (j = S,F,C) represent the z components of the individual wave vectors defined by 

 

2 2 2
, 0 ( ) .j

z l j xk k n k lK= − +                                                      (3) 

 

Here we have the vacuum wavenumber 0k  = 02π λ , 0λ  is the vacuum wavelength, and jn  are the 

refractive indices of substrate, film, and cover, respectively. 

 

C. Boundary conditions 

To work out which values of xk  are allowed in the waveguide we need to apply the well-known 

boundary conditions stating that the tangential components of the electric and magnetic fields are 

continuous across the substrate-film and film-cover boundaries.  

 

(i) Continuity of tangential electric field at substrate-film boundary 

By matching the expressions of SE  and FE  from Eqs. (2) at the boundary Fz d= −  we obtain the 

following three relations:  

 

( ) ( ) ( ), , ,exp exp exp ,S F F
l z l F l z l F l z l Fb ik d a ik d a ik d− + −= − +                            (4) 

 



 

6 

where l = -1,0,1. As is seen here, the initial equation ( ) ( )S F F FE z d E z d= − = = −  is split up into 

three equations in Eq. (4), which is a result of the orthogonality of the spatial harmonics 

( )exp xi k lK x+� �� �. Therefore, the coefficients of each space-harmonic can be collected and set to 

zero separately resulting in three equations relating the nine amplitudes lb− , la+ , and la−  (l = -

1,0,1). 

 

(ii) Continuity of tangential magnetic field at substrate-film boundary 

From the assumption that the electric field E
�

 is TE polarized, i.e. ˆ ,E yE=
�

 and that the media 

involved are homogeneous, isotropic, and non-magnetic it follows from Maxwell’s equations that 

the magnetic field H
�

 is proportional to ˆ ˆz xx E z E∂ − ∂ , where ˆ ˆ,x z  are unit vectors along the x and 

z directions and ,x z∂  are derivatives with respect to x and z, respectively. The tangential part of H
�

 

is then found simply by scalar multiplying with the tangential surface vector ˆ ˆ xt x z h= + ∂
�

 (see 

Fig. 1) resulting in 

 

Tangential ,z x xH E E h∝ ∂ − ∂ ∂                                                    (5) 

 

where h  represents the surface topography defined in Eq. (1).  

 

At the substrate-film boundary xh∂  is obviously zero, which leaves us with a simple matching 

between 
F

z S z d
E

=−
∂  and 

F
z F z d
E

=−
∂  leading to 

 

( ) ( ) ( ), , , , , ,exp exp exp ,S S F F F F
z l l z l F z l l z l F z l l z l Fk b ik d k a ik d k a ik d− + −= − − +                       (6) 
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where again l = -1,0,1 and the coefficients of the spatial harmonics ( )exp xi k lK x+� �� � have been 

collected and set to zero. Like in Eqs. (4), Eqs. (6) comprise three equations relating the nine 

amplitudes lb− , la+ , and la−  (l = -1,0,1). 

 

(iii) Continuity of tangential electric field at film-cover boundary 

By matching FE  and CE  from Eqs. (2), now at the boundary ( )sinz Kxσ= , we obtain: 

 

( ) ( ){ } ( )( )
( ) ( ){ }

1

, ,
1

1

,
1

exp sin exp sin exp

exp sin exp .

F F
l z l l z l x

l

C
l z l x

l

a ik Kx a ik Kx i k lK x

b ik Kx i k lK x

σ σ

σ

+ −

=−

+

=−

� � � �+ − + =� �� �� � � �

� � +� �� �� �

�

�
              (7) 

 

If we assume that the grating is shallow, i.e. ,1 j
z lkσ << , we may use the relation 

( ),exp sinj
z lik Kxσ� �� � � 1 + ( ), sinj

z lik Kxσ  and obtain 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1
,

1

,

1
,

1

1 exp exp exp
2

1 exp exp exp
2

1 exp exp exp ,
2

F
z l

l
l

F
z l

l

C
z l

l
l

k
a iKx iKx ilKx

k
a iKx iKx ilKx

k
b iKx iKx ilKx

σ

σ

σ

+

=−

−

+

=−

� � �	 	+ − − +� �
 � �� �
 	 	
 ��

�� �	 	− − − =� � �� �� � �	 	
 � �

� �� �	 	+ − −� �
 �� �� �
 �	 	
 �� �

�

�

                        (8) 

 

in which the common factor ( )exp xik x  has been omitted. After expanding the sum in Eq. (8), 

constant terms (i.e. terms that do not depend on x) as well as terms proportional to ( )exp iKx−  and 

( )exp iKx  are collected and set to zero. This results in three equations relating the nine amplitudes 
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la+ , la− , and lb+  (l = -1,0,1). Terms of higher order being proportional to ( )exp 2iKx−  and 

( )exp 2iKx  are ommitted, as they relate to diffraction orders that are neglected. 

 

(iv) Continuity of tangential magnetic field at film-cover boundary 

By using relation (5) to match TangentialH  at the film-cover boundary we obtain 

 

 

( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( ) ( )

( ) ( )

1
,

,
1

1
,

,
1

1

1

,
,

1 exp exp exp
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1 exp exp exp
2

exp exp exp
2

1 exp exp
2

F
z lF

z l l
l

F
z lF

z l l
l

x l l
l

C
z lC

z l l

k
k a iKx iKx ilKx

k
k a iKx iKx ilKx

K
k lK a a iKx iKx ilKx

k
k b iKx iKx

σ

σ

σ

σ

+

=−

−

=−

+ −

=−

+

� �	 	+ − − −� �� �� �
	 	
 �

� �	 	− − − −� �� �� �
	 	
 �

+ + + − =� �� �

+ − −� �� �

�

�

�

( )

( ) ( ) ( ) ( )

1

1

1

1

exp

exp exp exp ,
2

l

x l
l

ilKx

K
k lK b iKx iKx ilKx

σ
=−

+

=−

� �	 	 −� �
	 	
 �

+ + −� �� �

�

�

                (9) 

 

where again the common factor ( )exp xik x  has been omitted and terms proportional to 2σ  have 

been neglected. 

 

Like in Eq. (8) constant terms as well as terms proportional to ( )exp iKx−  and ( )exp iKx  are 

collected and set to zero resulting in yet another three equations relating la+ , la− , and lb+  (l = -

1,0,1). 
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D. Deriving the mode equation 

As mentioned above, each of the four boundary conditions generates three equations which add up 

to twelve equations relating the twelve field amplitudes la+ , la− , lb+ , and lb−  (l = -1,0,1). However, 

by combining Eqs. (4) and (6) it is possible to isolate the amplitudes of the downwards 

propagating waves in the form:  

 

( ) ( ), , ,
, , ,

, , , ,

, ,

exp 2 , 2 exp .

l l l l l l

F S F
z l z l z lF F S

l z l F l z l z l FF S F S
z l z l z l z l

a a b a

k k k
ik d i k k d

k k k k

β γ

β γ

− + − += =

+
� �= − = − +� �− −

                 (10) 

 

Using these expressions in Eqs. (8) and (9) the number of equations can be reduced to six with the 

six unknowns la+ , lb+  (l = -1,0,1). After some algebraic manipulation of this system of equations 

we arrive at the following matrix equation 

 

0 ,e =A
��

                                                                 (11) 

 

where { }0 1 1 0 1 1, , , , ,e a a a b b b+ + + + + +
− −=�  and the elements of A  are given by 
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11 0 12 ,1 1 13 , 1 1 14

15 ,1 16 , 1 21 ,0 0 22

23 24 ,0 25 26

31 ,0 0 32 33 1 34 ,0

3

A 1 ,  A (1 ),  A (1 ),  A 1,  
2 2

A ,  A ,  A (1 ),  A 1 ,
2 2 2

A 0,  A ,  A 1,  A 0,
2

A (1 ),  A 0,  A 1 ,  A
2 2

A

F F
z z

C C F
z z z

C
z

F C
z z

k k

k k k

k

k k

σ σβ β β

σ σ σ β β

σ

σ σβ β

− −

−

−

= + = − − = − = −

= = − = − = +

= = − = − =

= − − = = + =

5 36 41 ,0 0

2
42 ,1 1

2
43 , 1 1 44 ,0

2 2
45 ,1 46 , 1

2
51 ,0 0

0,  A 1,  A (1 ),  

A ( ) ( ) (1 ),
2

A ( ) ( ) (1 ),  A ,  
2

A ( ) ( ) ,  A ( ) ( ) ,
2 2

A ( ) (1 ),  A
2

F
z

F
z x

F c
z x z

C C
z x z x

F
z x

k

k k K K

k k K K k

k k K K k k K K

k k K

β
σ β

σ β

σ σ

σ β

− −

−

= = − = −

� �= − + + +� �

� �= − − + = −� �

� � � �= + + = − − −� � � �

� �= − +� � 52 ,1 1

2
53 54 ,0 55 ,1 56

2
61 ,0 0 62

2
63 , 1 1 64 ,0 65 66 , 1

(1 ),

A 0,  A ( ) ,  A ,  A 0,  
2

A ( ) (1 ),  A 0,  
2

A (1 ),  A ( ) ,  A 0,A .
2

F
z

C C
z x z

F
z x

F C C
z z x z

k

k k K k

k k K

k k k K k

β

σ

σ β

σβ− − −

= −

� �= = − − = − =� �

� �= − + + =� �

� �= − = + = = −� �

              (12) 

 

To obtain nontrivial solutions to Eq. (11) the determinant of A  must equal zero. This results in a 

mode equation that can be written in the following form by keeping only terms up to 2σ : 

 

( ) ( )

( ) ( )

0 1 1

2 22
, ,

,0 ,0 ,0 ,0 1 1
1 , ,

2
2

1 1 0
1

, ,

2

, ,0 ,0 , ,

( ) ( )
( ) (1 ) 2

2 (1 ) (1 )

(1 ) ,
2 2

1 1 ,

1
2

F C
z l z lF F C C

z z z l zF C
l l z l l z l

l l l
l

C F
l z l l z l l

F C F C
l z l z z z l z

D D D

k k
k k k k D D

k k

T
K D D M D D

D k k

M k k k k k

σ β
β β

σ β

β β

−

−
=±

− −
=±

=

� �−
+ − + −� �− − +� �

� �� �+ − + +
 �� �
� �� �

= + − −

= − − +

�

�

( ) ( ) ( )
( ) ( )

2 3

,0 ,0 ,

2 2

,1 ,0 ,0 , 1

,

2 .

C F C C
l z z z l

C F C C
z z z z

k k k

T k k k k −

� �− +� �� �

= − − −

                  (13) 
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Here lD  (l = -1,0,1) are the individual determinants of the three groups of diffraction orders for 

the non-corrugated waveguide (σ  = 0). For example, 0D  represents the determinant of the 4�4 

matrix that would have resulted if only the zeroth order waves 0a+ , 0a− , 0b+ , and 0b−  had been 

present in a non-corrugated waveguide. Hence, the equation 0 0D =  is equivalent to the 

conventional 3-layer mode equation for a planar waveguide without grating.16,20 The terms 

proportional to 2σ  on the right hand side of Eq. (13) are small correction terms representing the 

influence of the grating on the modes. 

 

E. Solving the mode equation: perturbational approach 

The mode equation (13) describes those values of xk  (corresponding to propagation angles in the 

waveguide) that make the original solution ansatz, Eq. (2), with twelve waves a solution to 

Maxwell’s equations.  

 

Usually, the solutions to the mode equation are expressed in terms of normalized xk  values called 

the effective refractive index N  = 0xk k . In general, a number of distinct solutions mN  exist for 

each waveguide geometry, with m being the mode number. In the following we shall analyze the 

impact of the surface corrugation on the solutions to the mode equation. Because σ  is considered 

small, we write mN  as a sum of the non-corrugated solution ( 0)mN σ =  = nc
mN  and a perturbation 

term mNδ : 

 

.nc
m m mN N Nδ= +                                                           (14) 
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By using mN = nc
mN  on the right hand side of Eq. (13) it is possible to recover a simplified mode 

equation: 

 

2 22
, ,

0 ,0 ,0 ,0 ,0
1 , ,

( ) ( )
( ) (1 ) 2 .

2 (1 ) (1 )
nc
m

F C
z l z lF F C C

z z z l zF C
l l z l l z l N N

k k
D k k k k

r k r k
σ β

=±
=

� �−
= − + −� �− − +� �

�  (15) 

 

To derive an analytical expression for mNδ  we expand Eq. (15) to first order in mNδ to recover 

 

( ) ( )

2

,0 ,' ''
,0 , ,2

10 ,

, , , ,

exp( 2 ) 1
2 ( ) ,

2 exp( 2 ) 1

, , ,

nc
m

F S F
z l z l FC F C

m m m z z l z l S C F
leff l l z l F N N

j F j F j
l z l z l z l z l

k ik di
N N i N k k k

k d N ik d

k k k k j S C

σ ν
δ δ δ

ν ν

ν

=±
=

� �� � − +
= + = + +
 � � �
 � − −� � � �

= + − =

�
  (16) 

 

where '
mNδ  and ''

mNδ  denote the real and imaginary parts of mNδ  and effd  is the effective 

thickness of the non-corrugated waveguide defined by21  

 

,0 ,0

1 1
.eff F C S

z z

d d i
k k

� �
= + +
 �
 �

� �
                                                 (17) 

 

In most practical sensor applications light is coupled in from air. In such cases and when 

Max{ , }S Cn n  > ( 1) 2Fn + , which is also mostly fulfilled, '
mNδ  and ''

mNδ  can be written in the 

following analytical form: 

 

( )
2 2 2 2

2 20
0

0 ,1 ,1

2
2 ,

2
nc
m

F m F C
m m C F C

m eff z z
N N

k n N n n
N N n k

k N d k k
σδ

=

� �− −� �′ � �≅ − − +
 � +� � � �� �

                 (18) 
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( ) ( ){ }
( ) ( )

32 2 2 2 2 2 22 2 2 , 1 , 1 , 1 0 , 1 0 , 1

22 4 2 2 2 2 2
, 1 , 1 , 1 0 , 1

( ) ( ) ( ) ( ) cos ( )
'' .

2 ( )( )cos ( )
nc
m

S F C S F
F C z z z z F S z F

F m
m

F S C Fm eff
z z z F S F C z F

N N

n n k k k k k k n n k dn N
N

N d k k k k n n n n k d

σδ
− − − − −

− − − −
=

� �− + + −−� � � �= 
 �
� � � �+ − − −� �� �

      (19) 

 

In Fig. 3 '
0Nδ  and ''

0Nδ  are plotted versus the corrugation depth σ  for the nanoporous 

waveguide.22,23 It is seen that '
0Nδ  is negative implying that the mode propagation angle in the 

film θ , defined by ( )sin θ  = 0 FN n , is decreased as a result of the surface corrugation. As 

expected, ''
0Nδ  is seen to be positive. The physical consequence of this is that each of the twelve 

waves in the solution ansatz (2) decay with the damping factor ( )''
0 0exp k N xδ− . This damping is 

due to the diffractive out-coupling of the main wave into the substrate and cover media through 

the 1l = −  diffraction orders. Therefore, the radiation loss coefficient of the system is given by 

0RAD mk Nα δ ′′= . 

 

In Fig. 4, '
0Nδ  and ''

0Nδ  are plotted versus film thickness Fd  for a surface corrugation of σ  = 10 

nm. Here, it is seen that for large film thickness and a film thickness close to the cutoff, '
0Nδ  and 

''
0Nδ  vanish. This is due to the fact that for a large film thickness, the surface corrugation has a 

decreasing influence on the effective thickness, whereas for a film thickness close to cutoff, the 

field penetration depth into the cover medium goes to infinity, so that eventually most of the mode 

power propagates outside the film and therefore does not experience the surface corrugation. 

Mathematically both effects are described by the 1/ effd term. 

 

3. Coupling into the waveguide: non-homogeneous problem 
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In this section we assume that a monochromatic plane wave is incident on the waveguide through 

the substrate, see Fig. 5. In order to couple into the mode, we need to launch the wave along the –

1st diffraction order, i.e. with an angle of incidence Sθ  given by ( )sinS Sn θ  = 0N K k− , so that 

after transmission through the substrate-film interface, the incident wave gets diffracted off the 

grating into the direction of the 0a  wave components. The resulting solution ansatz to be inserted 

in Maxwell's equations is therefore: 

 

 { }

1

1 , 1 ,
1

1

, ,
1

1

,
1

exp[ ( ) ] exp[ ( ) ] ,

exp[ ( ) ] exp[ ( ) ] ,

exp[ ( ) ] ,

S S
S x z l x z l

l

F F
F l x z l l x z l

l

C
C l x z l

l

E c i k K x ik z b i k lK x ik z

E a i k lK x ik z a i k lK x ik z

E b i k lK x ik z

+ −
− −

=−

+ −

=−

+

=−

= − + + + −

= + + + + −

= + +

�

�

�

              (20) 

 

where 1c+
−  is the amplitude of the incident field. 

 

By following exactly the same procedures as in Secs. 2C and 2D, it is straightforward to obtain the 

following non-homogeneous matrix equation: 

 

,e c=A� �
                                                                     (21) 

 

where A  and e
�

 are given in Sec. 2D and the driving vector c
�

 is given by 
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( ) ( )

, 1

1 1
2

, 1

, 1

2
0

1
,

2
0

F
z

F
z x

F
z

k

c c
k k K K

k

σ

κ
σ

−

+
− −

−

−

� �

 �

 �

 �

 �−

 �=

 �� �− − −
 �� �� �

 �

 �

 �
� �

�
                                      (22) 

 

with 

 

,

,

.
S
z l

l lF
z l

k

k
κ γ= −                                                               (23) 

 

Eq. (23) is readily solved by multiplying both sides with 1−A : 

1 .e c−= A� �
                                                              (24) 

 

By keeping only the lowest order terms in σ , analytical expressions for the elements of e
�

 can be 

found. For example, the amplitude 0a+  assumes the form 

 

( )
( )

2 2 2
, 1 0 1 1 1

0 .
det

F
z F Ck k n n D c

a
σ κ +

− − −+
−

=
A

                                           (25) 

 

The total internal reflection of the 0a+  and 0a−  waves in the film implies that 0 0a a+ −= . Thus, the 

in-coupled mode power is proportional to 
2

0a+ . In Fig. 6 this in-coupled mode power for the 

nanoporous waveguide versus N is plotted for three different values of surface corrugation depth 

σ . First of all, it is seen that for small surface corrugations a clear resonance close to the non-
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corrugated effective mode refractive index, 0
ncN , appears. However, the position of the resonance 

peak shifts downwards with increasing σ , the peak height decreases with increasing σ , and the 

half-width increases with σ .  

 

These peak shape characteristica are largely described by the 1/ det( )A  factor in Eq. (25). This is 

easily seen by Taylor expanding det( )A  around N = mN :24,25 

 

( ) 2
1 2det ( ) ( ) ,m mC N N C N N= − + − + ⋅⋅⋅A                                    (26) 

 

where 1,2,...C  are constants. Close to resonance, i.e. N  →  mN , we may keep only the first order 

term, after which we get 

 

' ''
1det( ) ( ) .nc

m m mC N N N i Nδ δ� �≅ − + −� �A                                    (27) 

 

Thus, because the square modulus of 0a+  is proportional to 
2det( ) −A , the in-coupled mode power 

assumes a Lorenzian shape around resonance:  

 

( ) ( )
2

0 2 2' ''

1
,

nc
m m m

a
N N N Nδ δ

+ ∝
� �− + +� �

                                    (28) 

 

where '
mNδ  represents the shift in resonance and ''

mNδ  determines the peak height and the half-

width (= ''2 mNδ ) achieved due to the surface corrugation, just as we observed in Fig. 6. 
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4. Numerical verification 

In order to verify the validity of our analytical approach above, we have analyzed the in-coupling 

problem numerically. The numerical routine used is the so-called multiple interface boundary 

variation method.17-19 This approach enables modeling of periodic transmission consisting of an 

arbitrary number of materials and interfaces of general shape subject to plane wave illumination. 

A convolution of the exact waveguide solution with a multi-layered boundary variation solution 

yields the coupling coefficient for light coupled into the sensor. 

 

In Figs. 7a-c the results of the numerical solutions are shown as dotted data points. As can be seen, 

there is good correlation between the numerical data and the analytical curves for σ  up to ~ 80 

nm. 

 

Regarding the peak shapes, these are further analyzed in Fig. 8 where '
0Nδ  (resonance position) 

and ''
0Nδ  (resonance height and width) have been compared with the analytically obtained values. 

It is seen that the analytical model starts breaking down at σ  � 80 nm corresponding to about 1/2 

of the film thickness. 

 

The '
0Nδ  and ''

0Nδ  values may easily be converted into corresponding propagation angle values 

jδθ  (j = S, F, C) in the three media by using that  

 

' '
0

'' ''
0

,

2 .

j j

j j

N n

N n

δθ δ

δθ δ

=

=
                                                        (29) 
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Here '
jδθ  and ''

jδθ  represent the shift in coupling angle and peak half-width, respectively. Thus, 

for σ  = 80 nm, corresponding to half the film thickness, the peak shifts and peak half-widths 

(measured in the substrate) are 0.28 deg and 0.22 deg, respectively. Using the grating equation one 

can easily calculate the in-coupling angle, measured in air, which is the usual experimentally 

measured waveguide sensor parameter. For σ = 10 nm, a typical grating depth, the peak shift is 

5.8�10-3 deg, which is approximately two orders of magnitude higher than the resolution usually 

obtained in optical waveguide lightmode spectroscopy.9,26 

 

5. Discussion 

Based on the well-known Rayleigh-Fourier analysis we have analyzed the influence of finite 

grating depths on the TE mode properties in grating-coupled optical planar waveguide sensors. By 

using a perturbational approach, expressions for the in-coupling peak shift and peak width have 

been derived. The analytical results obtained for a specific waveguide geometry were compared 

with rigorous numerical calculations. It was found that for grating amplitudes up to approximately 

half the waveguide film thickness, the analytical model provides satisfactory results.  

 

In the analyzed example, it was shown that a typical grating amplitude of 10 nm causes a shift on 

the order of 10-3 deg which is two orders of magnitude larger than a typical resolution for a 

waveguide sensor device. Hence, the finite grating depth influence is significant when performing 

absolute refractive index measurements or when performing absolute thickness detections of small 

add layers, such as proteins, lipid bilayers and inorganic film depositions. 

 

The presented model can be extended to cover TM mode propagation too and, moreover, we 

believe that the method may be used for finite grating lengths also. 
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Figure Captions 
 
Fig. 1. Schematic illustration of the waveguide structure considered. , ,S F Cn  are the refractive 

indices of the substrate, film and cover media, respectively, σ  is the grating amplitude, t
�

 is a 

tangential vector at the film-cover interface, Λ  is the grating period, and Fd  is the film thickness. 

 
Fig. 2. Diffraction orders included in the homogeneous analysis.  

 

Fig. 3. Real and imaginary parts of the correction term 0Nδ  plotted against surface corrugation 

depth σ  for a nanoporous waveguide.22,23 The parameters used are nS = 1.22, nF = 1.57, nC = 1.33, 

0λ  = 632.8 nm, Λ = 480 nm, and Fd  = 160 nm. 

 

Fig. 4. Real and imaginary parts of the correction term 0Nδ  plotted against film thickness Fd  for 

a nanoporous waveguide.22,23 The parameters used are: nS = 1.22, nF = 1.57, nC = 1.33, 0λ  = 632.8 

nm, Λ = 480 nm, and σ  = 10 nm. 

 

Fig. 5.  Wave vector scheme for the non-homogeneous case, in which an external wave with 

amplitude 1c+
−  is incident on the waveguiding film through the substrate. 

 

Fig. 6. In–coupled mode power versus effective refractive index N for the nanoporous waveguide 

(data given in Fig. 3 and 4). 

 

Fig. 7. In–coupled mode intensity versus effective refractive index N for the nanoporous 

waveguide (data given in Figs. 3 and 4). Line: analytical, points: numerical. 
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Fig. 8. 'Nδ  and ''Nδ  versus grating amplitude obtained analytically and numerically. 
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